
Course Name:Course Name:
Advanced JavaAdvanced Java

Lecture 21Lecture 21
Topics to be coveredTopics to be covered

 Coordinate Transformations
 Clipping
 Transparency and Composition
 Rendering Hints
 Readers and Writers for Images, Image

Manipulation
 Printing, The Clipboard, Drag and Drop

Coordinate TransformationCoordinate Transformation

There are Four transformations:

 Scaling – blowing up or shrinking ,all distances from a
fixed point. The scale method of the Graphics 2D class
sets the coordinate transformation of the graphics
context to a scaling transformation. That transformation
changes user coordinates (user-specified units) to
device coordinates (pixels).

 Rotation – rotating all points around a fixed center.

 Translation – moving all points by a fixed
amount.

 Shear – leaving one line fixed & “sliding” the
lines parallel to it by an amount that is
proportional to the distance from the fixed line.

 You supply both a rotation & scaling
transformation.

g2.rotate(angle);
g2.scale(2, 2);
g2.draw();

ClippingClipping
By setting a clipping shape in the graphics context, you
constraint all drawing operations to the interior of that
clipping shape.

g2.setClip(clipShape) ;
g2.draw(shape) ;

However, in practice you don’t want to call the setClip
operation, since it replaces any existing clipping shape that
the graphics context may have. Instead call the clip
method.

g2.clip(clipShape) ;

The clip method intersects the existing clipping
shape with the new one that you supply.

If you just want to apply a clipping area
temporarily, then you should first get the old clip,
then add your new clip, & finally restore the old
clip when you are done :

Shape oldClip = g2.getClip() ; // save old clip
g2.clip(clipShape) ; // apply temporarily
clip
gr.setClip(oldClip) ; //restore old clip

Transparency & CompositionTransparency & Composition
 Porter & Duff two researchers in the field of

computer graphics, have formulated 12 possible
composition rules for this blending process. The
java 2D API implements all of these rules. These
rules are:

1) CLEAR – source clears destination.
2) SRC – source overwrites destination & empty

pixels.
3) DST – Source does not affect destination.
4) SRC_OVER – Source blends with destination &

overwrites empty pixels.
5) DST_OVER – Source does not affect destination &

overwrites empty pixels.

6) SRC_IN – Source overwrites destination.
7) SRC_OUT – Source clears destination &

overwrites empty pixels.
8) DST_IN – Source alpha modifies destination.
9) DST_OUT – Source alpha complement

modifies destination.
10) SRC_ATOP – Source blends with

destination.
11) DST_ATOP – Source alpha modifies

destination. Source overwrites empty pixels.
12) XOR – Source alpha complement modifies

destination. Source overwrites empty pixels.

Rendering HintsRendering Hints
Antialiasing – This technique removes the “jaggies” from

slanted lines & curves.

A slanted line must be drawn as a “staircase” of pixels.
Rather than drawing each pixel completely on or off. You
can color in the pixels that are partially covered, with the
color value proportional to the area of the pixel that the
line covers, and then the result looks much smoother.

Antialiasing takes a bit longer because it takes time to
compute all those color values.

You can request the antialising like :

g2.setRenderingHint(RenderingHints.KEY_ANTIALIA
SING, RenderingHints.VALUE_ANTIALIAS_ON);

ExampleExample

For Ex:
RenderingHints hints =new RenderingHints();

hints.put(RenderingHints.KEY_ANTIALIASING,
RenderingHints.VALUE_ANTIALIAS_ON);

hints.put(RenderingHints.KEY_TEXT_ANTIA
LIASING,RenderingHints.VALUE_TEXT_ANT
IALIAS_ON);

g2.setRenderingHints(hints);

Readers for Readers for ImagesImages
To load an image, use the static read method of the
ImageIO class:

File f = . . .;
BufferedImage image = ImageIO.read(f);

The ImageIO class picks an appropriate reader,
based on the file type. It may consult the file
extension and the "magic number" at the beginning of
the file for that purpose. If no suitable reader can be
found or the reader can't decode the file contents,
then the read method returns null.

Writers for ImagesWriters for Images

Writing an image to a file is just as simple:

File f = . . .;
String format = . . .;
ImageIO.write(image, format, f);

Here the format string is a string
identifying the image format, such as
"JPEG" or "PNG".

The ImageIO class picks an appropriate
writer and saves the file.

Obtaining Readers and Writers Obtaining Readers and Writers
for Image File Typesfor Image File Types

 For more advanced image reading and
writing operations that go beyond the static
read and write methods of the ImageIO
class, you first need to get the appropriate
ImageReader and ImageWriter objects.

 The ImageIO class enumerates readers
and writers that match one of the following:
◦ an image format (such as "JPEG")
◦ a file suffix (such as "jpg")
◦ a MIME type (such as "image/jpeg")

ExampExamplele
For example, you can obtain a reader that reads

JPEG files as follows:

ImageReader reader = null;

Iterator iter =
ImageIO.getImageReadersByFormatName("JP
EG");

if (iter.hasNext) reader =
(ImageReader)iter.next();

Image ManipulationImage Manipulation
PrintingPrinting
Graphics Printing –
To print a 2D graphic, the graphic can contain text in various fonts .To

generate a printout, u take care of these two tasks:
a) Supply an object that implements the Printable interface.
b) Start a print job.

The printable interface has a single method:

int print(Graphics g,PageFormat format, int page)

This method is called whenever the print engine needs to have a page
formatted for printing. Your code draws the text & image that are to
be printed onto the graphics context. The page format tells u the
paper size & the print margins. The page number tells u which page
to render.

To start a print job, u use the PrinterJob class. Firstly u call
the getPrinterJob method to get a print job object.
Then set the Printable object that u want to print.

Printable canvas=………;
PrinterJob job = PrinterJob.getPrinterJob();

Job.setPrintable(canvas);

Before starting the print job, u should call the printDialog
method to display a print dialog box. That dialog box
gives the user a chance to select the printer to be
used(in case multiple printers are available), the page
range that should be printed & various printer settings.

